Do I Really Need An Extended Warranty or Service Contract? (Part I of 2)

Budget time…you know the drill.   Salaries, supplies, new equipment and oh yeah, ongoing maintenance support.   Has there ever been a more sexy and attention riveting topic than maintenance budgeting?  Your options are pretty straight forward;

  • Annual Service Contracts  (typically 10-15% of purchase price, per year )
  • Break/Fix Repair As You Go (cross your fingers, ready the checkbook)
  • Basic Periodic Maintenance (pay for basic upkeep, then Repair As You Go)

If a particular instrument is critical to your labs mission you cannot afford downtime.    And, while we are on the subject, exactly what types of incell_2000instruments are mission critical?   Of course, the answer to that question will be different for every lab and largely depends upon their focus area.  For instance, if you have are in a cell biology group and have a high content imaging system such as a GE IN Cell, it might be wise to put that unit under a service contract with the manufacturer.    This is advisable for any instrument that can be considered unique or expensive but could even be extended to relatively new technology such as microfluidic based analyzers.    Caliper (now Perkin Elmer) provide a line of such analyzers for enzymatic assays as well as nucleic acids and protein analysis.   The first and second generation instruments are still out there and they require a great deal of TLC and in depth operation and support knowledge.   Newer versions of these refrigerator sized devices are much more compact and a lot less support intensive, eli12 Sipper LabChipminating complex laser alignments and environmental controls.  Still, while the instruments themselves may be easier to service, the actual “microfluidic chips” that perform sampling and separation cost several thousand dollars each and users may run the risk of voiding the chip warranty if they don’t use the OEM to maintain the instrument.  Stick with the OEM service contract.

Okay, so what instruments that are less specialized…do you really need to spend your precious budget dollars on annual service contracts?   Let’s take a look at the staple of many labs, liquid handlers.    There are literally thousands of such units from companies like Beckman Coulter, Tecan, Hamilton, Agilent and Perkin Elmer.    These XYZ robots offer great pipetting repeatability and walkaway automation of mixing, filtration, incubation and other critical assay steps.    A liquid handler that cost $100-150K ten years ago can still command a $10-15K+ price tag for an annual maintenance contract.   That’s a lot, but is it really necessary?  Liquid handlers, at least the good one’s from mainstream companies like those listed above have proven to be Tecan EVOremarkably reliable.   With even basic annual maintenance, these instruments can run trouble free for the foreseeable future.   In fact, most OEM periodic or preventative maintenance (PM) procedures are just that, minimal approaches that clean, inspect and lubricate.   One exception would be Tecan, whose EVO PM procedure calls for replacing all fluid path components making their PM (and subsequently their annual maintenance agreements) costs some of the most expensive.  Is that necessary?  Probably not, but one could argue that such a thorough approach is akin to performing a ‘field refurb.’   If your lab has GxP requirements, this would certainly be advisable, but otherwise you might think about doing this every other year.     If you own a Beckman FX /NX,  or PE Janus  you might want to follow the Tecan lead, and get that ‘field refurb,’ especially if you have never had this level of service after several years of use.

Be wary of annual contracts for integrated robotic systems.  A system with an industrial robot in a safety enclosure might tend to many additional instruments such as plate washers, readers, centrifuges, incubators and so on.   If you apply the 10-15% of sales price logic to the purchase price of the system, you will find your coverage costs being inflated by things that could never fail like the extruded aluminum tables, the safety enclosure or even the design and build labor that was factored into the original system price tag.   Better to look as the individual instruments in that system and determine their support costs piece by piece, not in the aggregate.

(In Part II of this post, we will look at the service requirements of thermal cyclers, plate readers and centrifuges).

Advertisements
This entry was posted in Uncategorized and tagged , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s